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Abstract—In robotic manipulation, vision–language–action
(VLA) models have emerged as a promising paradigm for
learning generalizable and scalable robot policies. Most existing
VLA frameworks rely on standard supervised objectives, typi-
cally cross-entropy for discrete actions and mean squared error
(MSE) for continuous action regression, which impose strong
pointwise constraints on individual predictions. In this work,
we focus on continuous-action VLA models and move beyond
conventional MSE-based regression by reshaping action error
distributions during training. Drawing on information-theoretic
principles, we introduce Minimum Error Entropy (MEE) into
modern VLA architectures and propose a trajectory-level MEE
objective, together with two weighted variants, combined with
MSE for continuous-action VLA training. We evaluate our ap-
proaches across standard, few-shot, and noisy settings on multiple
representative VLA architectures, using simulation benchmarks
such as LIBERO and SimplerEnv as well as real-world robotic
manipulation tasks. Experimental results demonstrate consistent
improvements in success rates and robustness across these
settings. Under imbalanced data regimes, the gains persist within
a well-characterized operating range, while incurring negligible
additional training cost and no impact on inference efficiency. We
further provide theoretical analyses that explain why MEE-based
supervision is effective and characterize its practical range.

I. INTRODUCTION

Information-theoretic principles have long served as a foun-
dational driver of modern deep learning. In recent years, the
rapid emergence of large-scale foundation models has further
accelerated progress in artificial intelligence, leading to un-
precedented growth across a wide range of domains. In robotic
manipulation, Vision-Language-Action (VLA) models have
demonstrated strong potential for generalization and scalability
by leveraging the powerful visual and linguistic understanding,
reasoning, and generation capabilities inherited from large
Vision-Language Models (VLMs) [47, 27, 2]. Within this
paradigm, classical information-theoretic learning objectives,
such as cross entropy for classification and mean squared error
(MSE) for regression, remain fundamental components. These
objectives play central roles in discrete action modeling [20, 8]
and continuous action generation [36, 19], respectively.
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As both discrete and continuous action modeling paradigms
continue to evolve, we focus on continuous-action VLA
models because they represent actions in a metric space
with a well-defined notion of prediction error. This model-
ing choice naturally leads to pointwise regression objectives,
most commonly mean squared error (MSE), which provide a
simple and effective supervision signal for continuous control
and are widely adopted in practice [30, 26]. Despite their
empirical success and stable optimization behavior, MSE-
based objectives operate solely at the level of individual
action predictions. From an analysis perspective, however,
action prediction errors can be viewed not only as isolated
deviations, but also as samples drawn from an underlying error
distribution that evolves across time and action dimensions.
Such distributions often exhibit structured patterns, including
dispersion, skewness, or correlated variations, even when per-
step regression losses are well optimized, as illustrated in Fig-
ure 1. This observation suggests that beyond per-step accuracy,
the collective organization and geometry of action errors are
not explicitly regulated by pointwise regression objectives.

From a distributional perspective, the behavior of a policy
is governed not only by the magnitude of individual errors,
but also by the uncertainty, concentration, and structure of
the error distribution as a whole. Information-theoretic cri-
teria provide a natural framework for characterizing such
distribution-level properties, as they operate directly on proba-
bility distributions rather than individual samples. In particular,
entropy-based objectives offer a principled way to quantify
how concentrated or dispersed an error distribution is, without
committing to strong parametric assumptions. Among such
objectives, the minimum error entropy (MEE) criterion [25, 9]
directly targets the entropy of the action error distribution,
enabling interactions among errors within a batch or trajec-
tory and providing a mechanism to aggregate errors beyond
pointwise regression.

To operationalize entropy-based error aggregation in VLA
models, we adapt the MEE criterion to the action predic-
tion setting by reformulating it over trajectory-level action
errors, resulting in Trajectory-level MEE (T-MEE). Building
on this formulation, we further introduce two complementary
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Fig. 1. PCA visualization of action error distributions with and without trajectory-level MEE (T-MEE). Each point represents an action error at a
specific time step along a trajectory. The top-10 most extreme outliers are highlighted with numeric labels, while red circles indicate compact action error
clusters. Results are shown for BC-Transformer and GR00T trained with standard MSE-based behavior cloning and with the proposed T-MEE objective on
LIBERO-Object. Per-task success rates (SR) for the two visualized tasks are annotated in the figure. For reference, the overall SR on the full 10-task LIBERO-
Object suite improves from 57.4% to 68.2% for BC-Transformer and from 94.4% to 97.8% for GR00T. Across both architectures and tasks, incorporating
T-MEE leads to more compact and coherent action error distributions in the projected space.

weighted variants: Chunk-weighted T-MEE (Cw-TMEE) and
Element-weighted T-MEE (Ew-TMEE). These variants pro-
vide finer-grained control over how action errors are aggre-
gated and interact within the entropy objective. We conduct
a comprehensive empirical evaluation across multiple VLA
architectures and model scales. Our experiments span near-
balanced, few-shot, noisy, and imbalanced data regimes, and
demonstrate consistent improvements across a broad range of
settings. By systematically varying the degree of data imbal-
ance, we further characterize the effective operating regime of
entropy-based error aggregation and identify conditions under
which it is most beneficial. Complementary analysis exper-
iments provide insights into the resulting error distribution
dynamics induced by the proposed objectives.

In addition to empirical validation, we provide a theoretical
analysis of the optimization behavior induced by the MEE
objective. Our analysis characterizes three key properties that
help explain the observed empirical behavior. First, we show
that MEE induces similarity-weighted interactions among ac-
tion errors, resulting in a distribution-level optimization effect
that regulates the relative geometry of the error space rather
than penalizing individual error magnitudes. Second, we es-
tablish that the influence of outlying or highly corrupted errors
is inherently bounded under MEE, offering a principled expla-
nation for its robustness compared to conventional regression
objectives. Finally, we analyze how MEE induces coupling or
decoupling among multiple tasks through interactions in error
space, and show that cross-task transfer and interference are
jointly governed by task similarity, as reflected by the overlap
of their error distributions, and by sample imbalance.

Our contributions are threefold. First, we revisit action

errors from a distributional perspective and adapt MEE to
the VLA setting, proposing three trajectory-level variants
to capture structured action error distributions. Second, we
provide theoretical analyses that characterize the optimization
behavior of the proposed objectives and establish conditions
under which they are effective. Finally, we conduct extensive
empirical evaluations on two simulation benchmarks and real-
robot manipulation tasks across multiple VLA architectures
and model scales, spanning balanced, few-shot, noisy, and
imbalanced training regimes, and complement these results
with targeted analysis to validate effectiveness and provide
insights into the behavior of the proposed methods.

II. RELATED WORK

Information-Theoretic Supervision for Continuous Regres-
sion. Mean squared error (MSE) is among the most widely
used regression loss functions in machine learning due to
its favorable optimization properties and stable behavior in
practice [24]. By penalizing squared deviations between pre-
dictions and targets, MSE enforces pointwise agreement but
captures only a single aspect of prediction errors, namely their
second-order moment, without explicitly modeling the global
structure of the underlying error distribution. This limitation
has motivated prior work on characterizing error distributions
beyond pointwise loss measures [6]. Information-theoretic
objectives address this limitation by operating directly at
the distribution level. In particular, Minimum Error Entropy
(MEE) [25, 9, 10] minimizes the entropy of the empirical
error distribution, encouraging errors to concentrate into com-
pact and structured configurations without assuming a prede-
fined parametric form. Compared to alternative information-
theoretic criteria, such as KL divergence–based [44] or mutual



information–based [3] objectives, MEE avoids the need to
specify a target distribution or to perform explicit information
estimation in high-dimensional continuous spaces. In this
work, we introduce MEE into the VLA setting and adapt
it to continuous action regression. We further propose three
trajectory-level variants and provide a comprehensive theoret-
ical analysis to characterize their optimization behavior and
effectiveness. A detailed review of related MEE literature is
provided in Appendix E.
Vision-Language-Action (VLA) Models. VLA models build
upon advances in vision-language models, inheriting strong
visual-language understanding, reasoning, and generation ca-
pabilities [47, 27, 45]. These capabilities enable unified action
modeling and have demonstrated favorable scaling behavior
in robotic manipulation [39]. Beyond large-scale foundation
models, the VLA paradigm has also been extended to smaller-
scale architectures that take visual-language inputs and directly
produce action outputs, further broadening its applicability.
Existing VLA approaches broadly fall into two paradigms.
The first formulates action generation as autoregressive token
prediction, in which actions are discretized and generated in a
token space [20, 41]. The second focuses on continuous action
generation, predicting continuous control signals via learnable
action queries [3, 26], specialized action experts [29, 5, 4, 23],
or their combinations [42]. This paradigm also includes dual-
system VLA architectures, where a fast System 1 executes
low-level actions at high frequency, while a slower System 2
provides contextual guidance over longer timescales [7, 15].
In this work, we focus on the continuous-action paradigm and
study its modeling properties from the perspective of reshaping
action error distributions. Across diverse architectures and
model scales, we conduct extensive experiments to evaluate the
effectiveness and applicability range of the proposed approach
under varied training regimes and data conditions.

III. PRELIMINARIES

Problem Setting. We consider VLA learning under a behavior
cloning (BC) paradigm for robotic manipulation. The envi-
ronment is modeled as an instruction-conditioned sequential
decision process, where a robot interacts with the environment
under a natural language instruction. At each timestep t,
the robot receives a multimodal observation consisting of
a visual observation ot, an optional proprioceptive state st,
and a language instruction l. We denote the overall input
as xt = (ot, st, l). The robot outputs a continuous action
at ∈ A, such as end-effector motion commands or arm-gripper
controls. In VLA, the policy πθ is trained from an expert
demonstration dataset De = {(xt, at)} by supervised learning.
The objective is to learn a policy that mimics expert actions
conditioned on the observed images and instructions. Formally,
the BC objective is defined as

π∗ = argmin
πθ

E(xt,at)∼De

[
L(πθ(x

t), at)
]
, (1)

In continuous-action VLA, the loss L denotes a regression
objective and is typically chosen as the MSE, yielding

LMSE = E(xt,at)∼De

[
∥πθ(x

t)− at∥2
]
. (2)

This pointwise regression objective enforces per-timestep
agreement between predicted and expert actions and serves
as the standard training objective for continuous-action VLA
models. In the following sections, we revisit action errors from
a distributional perspective and introduce information-theoretic
supervision to reshape action error distributions.
Definition of MEE. In a standard regression setting, an input x
is mapped to an output by a parametric model fθ. Let y ∈ Rd

denote the ground-truth target, ŷ = fθ(x) the prediction, and
e = y − ŷ the prediction error. The Minimum Error Entropy
(MEE) principle learns model parameters by minimizing the
entropy of the error distribution. When instantiated with Shan-
non entropy [37], the objective is

min
θ

H(e) = −
∫

p(e) log p(e) de, (3)

where p(e) denotes the probability density of the error
variable. Minimizing H(e) encourages prediction errors to
concentrate into a low-uncertainty distribution, rather than
merely reducing their expected magnitude. However, direct
optimization of Shannon entropy is generally intractable due
to the need for explicit density estimation. In practice, MEE is
commonly instantiated using the quadratic Rényi entropy [35],

H2(e) = − log

∫
p2(e) de, (4)

which provides a tractable approximation to Shannon entropy.
Minimizing H2(e) is equivalent to maximizing the squared
density integral and favors compact error distributions.

IV. METHOD

A. Adapt MEE to VLA Models

Classical MEE formulations are typically defined over
scalar, sample-level prediction errors and are primarily applied
in i.i.d. regression or adaptive filtering settings [10, 13].
In contrast, action prediction in VLA models is structured,
involving high-dimensional actions generated over temporally
correlated trajectories. To bridge this gap, we reformulate MEE
at the trajectory level by treating action prediction errors across
time and batch as samples from a shared error distribution.
This trajectory-level MEE (T-MEE) enables entropy-based
supervision to operate on the collective geometry of action
errors induced by VLA policies. Building on this formulation,
we further introduce Chunk-weighted and Element-weighted
T-MEE variants, which provide finer-grained control over error
shaping across temporal segments and action dimensions.

In VLA models, let â t
b,k ∈ RD and a t

b,k denote the predicted
and ground-truth actions at the k-th step of an action chunk
generated at time t for trajectory b, where k ∈ {0, . . . ,K−1}
and K is the chunk size. We define the action prediction error
as e t

b,k = â t
b,k − a t

b,k. Rather than treating errors at individual
timesteps independently, we aggregate action prediction errors
across batch, time, and chunk dimensions and regard them
as samples drawn from a shared error random variable. This
formulation aligns naturally with action chunking in VLA
models, where multiple future actions are generated jointly
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Fig. 2. Architectural taxonomy of continuous-action VLA models evaluated in this work. We summarize representative small- and large-scale VLA
architectures. (a–b) Small-scale models regress actions from multimodal features using lightweight backbones: (a) BC-RNN / BC-Transformer with MLP
policy heads, and (b) BC-DP with a diffusion-based action expert. (c–f) Large-scale models build upon pretrained VLMs: (c) OFT introduces learnable action
queries into autoregressive VLMs; (d) GR00T conditions an action expert (AE) on final-layer VLM features; (e) π0 variants enable tighter VLM–action
coupling via multi-layer conditioning or shared attention; and (f) DS-VLA adopts a dual-system design with a fast System 1 for action execution and a slower
System 2 for contextual guidance. Here, V denotes image tokens, L denotes language tokens, Q denotes query tokens, and N denotes noise inputs.

as temporally correlated chunks. Formally, given a batch of B
trajectories with horizon T and chunk size K, the resulting
set of error samples is

E =
{
e t
b,k

∣∣ b = 1, . . . , B, t = 1, . . . , T, k = 0, . . . ,K − 1
}
.

(5)
We then apply the quadratic Rényi entropy to the aggregated

action error distribution. Specifically, all action error vectors
e t
b,k across the batch, temporal, and chunk dimensions are

flattened into a set of N = B × T ×K samples, denoted as
{ei}Ni=1. This yields the following T-MEE empirical objective:

LT-MEE = − log

 1

N2

N∑
i=1

N∑
j=1

exp

(
−∥ei − ej∥2

2σ2

) , (6)

where σ denotes the kernel bandwidth. Following standard
practice in information-theoretic learning and prior MEE-
based methods, σ is chosen from the range [0.5, 2.0].

Building upon the T-MEE objective, we introduce a unified
weighted formulation that accounts for the varying reliability
of action error samples. Let {ei}Ni=1 denote the aggregated
action error vectors. Each error sample is assigned a non-
negative importance weight based on its magnitude:

wi =
exp

(
−∥ei∥2/2σ2

w

)∑N
k=1 exp(−∥ek∥2/2σ2

w)
, (7)

where σw denotes the kernel bandwidth, which is fixed to 0.5.
Using these weights, we define a weighted quadratic Rényi

entropy estimator as

LW-TMEE = − log

N∑
i=1

N∑
j=1

ωij exp
(
−∥ei − ej∥2/2σ2

)
, (8)

where σ denotes the kernel bandwidth and ωij specifies
the weighting scheme. We set ωij = 1

N2wi, yielding an
asymmetric weighting that emphasizes reliable action chunks
while aggregating errors across trajectories, which results
in Chunk-weighted T-MEE (Cw-TMEE). Alternatively, we
define ωij = wiwj , leading to a symmetric, element-weighted
quadratic Rényi entropy estimator, referred to as Element-
weighted T-MEE (Ew-TMEE).

Accurate trajectory imitation requires prediction errors to
be not only structured but also centered near zero at each
timestep. Pointwise regression supervision, such as MSE,
provides this anchoring effect by directly penalizing the mag-
nitude of individual action deviations and driving the error
distribution toward the origin. Accordingly, we combine the
distribution-level T-MEE objective with the standard MSE
loss, yielding the final training objective:

Ltotal = LMSE + αLT-MEE, (9)

where α balances the anchoring effect of pointwise accuracy
and the distribution-level shaping.

B. Model Architecture
All evaluated models are summarized in Figure 2. We con-

sider both small-scale and large-scale VLA models. For small-
scale models, BC-RNN and BC-Transformer [32] regress



actions from multimodal features using lightweight sequence
models with a shared perception backbone. Both adopt
ResNet-18 [22] as the image encoder and a BERT-based
language encoder [17]. BC-RNN employs a 2-layer RNN
backbone, while BC-Transformer uses a lightweight 4-layer
Transformer [40], resulting in approximately 20M and 10M
parameters, respectively. BC-DP [14, 3] follows a similar
perception setup but replaces the policy head with a diffusion-
based action expert implemented as a 12-layer Transformer,
yielding an overall model size of approximately 100M pa-
rameters. For large-scale VLA models, we evaluate four
representative architectural paradigms. OpenVLA-OFT-style
methods regress continuous actions via action queries within
autoregressive VLMs [26]. GR00T-style models condition
an action expert on final-layer VLM features [4], while π0

variants explore tighter VLM–action coupling through multi-
layer conditioning [5]. DS-VLA adopts a dual-system design,
where a fast System 1 executes actions at high frequency
and a slower System 2 provides long-horizon contextual
guidance [7, 15]. To ensure a fair comparison, we standardize
the vision–language backbone across all large-scale models by
replacing it with Qwen3-VL [1] (using the 2B variant unless
otherwise specified) and adopting its native image encoder.
Except for OFT, all large-scale models employ a shared flow-
matching action head implemented as a 16-layer Transformer.
As a result, all large-scale models have comparable capacity,
with approximately 2.3B parameters each, enabling systematic
evaluation of our method across diverse architectural designs.

C. Theoretical Analysis

This section analyzes the optimization behavior induced by
the proposed T-MEE objective. We identify three fundamental
properties that explain how T-MEE shapes error interactions,
improves robustness to non-Gaussian noise, and induces struc-
tured coupling in multi-task learning scenarios.

1) Similarity-Weighted Interaction Between Trajectory Er-
rors: T-MEE operates in error space by inducing structured
interactions among action prediction errors through pairwise
similarity. Let {ei}Ni=1 denote the set of trajectory-level action
prediction errors. We define the Gaussian kernel measuring
error similarity as:

kij = exp

(
−∥ei − ej∥2

2σ2

)
, Z =

N∑
i=1

N∑
j=1

kij , (10)

where Z denotes the corresponding information potential. The
T-MEE objective can be written compactly as LT-MEE =
− log(Z/N2).
Proposition 1 (Similarity-Weighted Error Interaction). Under
the T-MEE objective, the negative gradient of each error
sample induces a similarity-weighted interaction of the form:

−∇ei
LT-MEE =

2

σ2Z

N∑
j=1

kij(ej − ei). (11)

This result shows that T-MEE does not penalize errors inde-
pendently. Instead, each error sample is attracted toward other

errors in proportion to their similarity, leading to clustering
behavior in error space. As a consequence, optimization under
T-MEE regulates the collective geometry and entropy of the
error distribution rather than merely reducing individual error
magnitudes. The proof is provided in Appendix A.

2) Robustness to Non-Gaussian Noise and Outliers: Be-
yond shaping error geometry, T-MEE exhibits inherent robust-
ness to non-Gaussian noise and outliers due to its distribution-
level formulation.
Proposition 2 (Robustness via Higher-Order Statistics). By
minimizing Rényi’s quadratic entropy, T-MEE implicitly opti-
mizes higher-order statistics of the error distribution, making
it less sensitive to non-Gaussian perturbations than quadratic
regression losses. The proof is provided in Appendix B.
Proposition 3 (Bounded Influence of Outliers). For an
outlying error sample eo far from the bulk of the error
distribution, the gradient contribution induced by eo under
T-MEE is exponentially bounded. In particular,∥∥∇eo

LT-MEE

∥∥ = O
(
c e−c2/2

)
, (12)

where c denotes the normalized distance to other error
samples. In contrast to MSE, whose gradients grow linearly
with error magnitude, the kernel-based weighting in T-MEE
adaptively suppresses the influence of extreme deviations.
As a result, the optimization dynamics are governed by the
consensus structure of the error distribution rather than by
isolated outliers. A full analysis is provided in Appendix C.

3) Interaction Structure in Multi-Task Settings: We analyze
multi-task interaction under the T-MEE objective in the error
space, where optimization dynamics are governed by the
geometry of action prediction errors rather than task labels.
Proposition 4 (Imbalance-Induced Task Coupling). Consider
two tasks A and B trained jointly under T-MEE. If their
error distributions exhibit non-negligible overlap in error
space, then sufficiently large sample imbalance causes the
optimization of the minority task B to be dominated by cross-
task interactions from the majority task A. Conversely, when
cross-task overlap is negligible, tasks evolve independently
regardless of their relative sample sizes.

Multi-task coupling under T-MEE is jointly governed by
task similarity in error space and sample imbalance, and can
be quantified by the coupling ratio

RB ≜ 2 · NA

NB
· k̄AB

k̄BB
, (13)

which characterizes the relative strength of cross-task interac-
tions acting on the minority task B. When RB ≫ 1, task B is
dominated by majority-task errors, whereas RB ≪ 1 indicates
effective decoupling. In benchmarks such as LIBERO, tasks
sharing similar visual contexts and action primitives often
exhibit substantial error-space overlap, and under severe data
imbalance this leads to degraded performance on underrep-
resented tasks, consistent with our empirical observations. A
formal analysis is provided in Appendix D.



TABLE I
PERFORMANCE ON LIBERO ACROSS DIFFERENT MODEL SCALES. WE EVALUATE 40 TASKS ACROSS FOUR SUITES, EACH WITH 50 TRIALS. RESULTS ARE

REPORTED AS SUCCESS RATES. BEST RESULTS ARE BOLDED.

Params Method Spatial Goal Object Long Avg

<20M

BC-RNN [32] 40.0 8.2 11.0 0.8 15.0
+ T-MEE 50.4 36.8 21.0 4.8 28.3

BC-Transformer [32] 69.6 68.4 57.4 14.8 52.6
+ T-MEE 85.2 73.2 68.2 27.2 63.5

∼100M BC-DP [14] 65.6 79.2 91.2 80.2 79.1
+ T-MEE 72.6 82.4 92.6 80.0 81.9

>2B

GR00T [4] 98.4 95.4 98.8 92.8 96.4
+ T-MEE 98.8 96.2 99.4 93.4 97.0

OFT [26] 98.8 93.6 98.4 91.2 95.5
+ T-MEE 99.0 96.8 99.2 92.8 97.0

π0 [5] 99.4 96.4 98.6 92.8 96.8
+ T-MEE 99.8 98.2 100.0 95.6 98.4

DS-VLA [38] 98.2 96.4 99.2 89.2 95.8
+ T-MEE 98.6 97.6 99.8 96.8 98.2

TABLE II
PERFORMANCE OF DIFFERENT VLA ARCHITECTURES ACROSS 2B AND 4B BASE VLM SCALES ON THE SIMPLERENV-WIDOWX BENCHMARK. RESULTS

ARE REPORTED AS SUCCESS RATES. BEST RESULTS ARE BOLDED.

(a) 2B Base VLM

Method Put
Spoon

Put
Carrot

Stack
Cube

Put
Eggplant Avg

GR00T [4] 87.5 54.2 12.5 45.8 50.0
+ T-MEE 66.7 50.0 16.7 83.3 54.2

OFT [26] 37.5 25.0 0.0 91.7 38.5
+ T-MEE 29.2 8.3 25.0 95.8 39.6

π0 [5] 37.5 25.0 4.2 70.8 43.8
+ T-MEE 62.5 41.7 16.7 62.5 45.8

DS-VLA [38] 58.3 54.2 12.5 70.8 49.0
+ T-MEE 62.5 58.3 25.0 79.2 56.3

(b) 4B Base VLM

Method Put
Spoon

Put
Carrot

Stack
Cube

Put
Eggplant Avg

GR00T [4] 83.3 33.3 12.5 83.3 53.1
+ T-MEE 75.0 45.8 16.7 95.8 58.3

OFT [26] 20.8 33.3 12.5 95.8 40.6
+ T-MEE 45.8 33.3 4.2 83.3 41.7

π0 [5] 70.8 33.3 16.7 91.7 53.1
+ T-MEE 79.2 41.7 33.3 91.7 61.5

DS-VLA [38] 75.0 29.2 16.7 83.3 51.0
+ T-MEE 75.0 45.8 12.5 91.7 56.3

V. EXPERIMENTS

A. Experiment Setup

Simulation Benchmark. We evaluate our methods on two es-
tablished benchmarks for robotic manipulation, LIBERO [32]
and SimplerEnv [31]. We select four task suites from LIBERO,
including Spatial, Goal, Object, and Long, each of which
contains 10 single-arm manipulation tasks. For each suite, we
report both suite-level success rates and the overall average,
with 50 evaluation rollouts conducted per task. SimplerEnv is a
real-to-sim benchmark designed to measure the generalization
and robustness of manipulation policies trained on real-world
demonstrations. We evaluate on four WidowX manipulation
tasks and report per-task success rates along with the overall
average, based on 24 rollouts per task.
Real-world Setup. As shown in Figure 4, our real-world
setup uses an Agilex Cobot Magic wheeled platform equipped
with three RGB-D cameras. We consider three categories of
manipulation tasks: placing a banana into the basket, wiping
the whiteboard, and handing over a cup, along with one out-
of-distribution task that involves handing over a cup in the
presence of visual distractors. For data collection, we record
100 demonstration trajectories per task category at 30 Hz.
During evaluation, each task is executed for 12 rollout trials.

B. Main Results under Near-Balanced Data

Simulation Experiments. As shown in Table I, incorpo-
rating T-MEE consistently improves performance across all
four suites. For small-scale models, including BC-RNN, BC-
Transformer, and BC-DP, T-MEE yields substantial gains,
improving the average success rate by up to +13.3% for BC-
RNN and +10.9% for BC-Transformer. For large-scale VLA
models, the improvements are more moderate but remain con-
sistent, typically ranging from +0.5 to +2.4%. As these models
already achieve near-saturated performance, the marginal gains
from further reshaping action error distributions are naturally
smaller. Overall, these results demonstrate that T-MEE remains
effective even under near-balanced data regimes.
Real-world Robot Experiments. We select GR00T N1.5 [4]
as the baseline for real-world evaluation. During real-robot
experiments, we observe that incorporating T-MEE leads to
noticeably more stable and accurate action execution, re-
flected in smoother trajectories and fewer corrective motions.
As shown in Figure 4, T-MEE consistently improves the suc-
cess rate of GR00T in real-world settings, indicating that the
distribution-level regularization induced by T-MEE generalizes
beyond simulation benchmarks and transfers effectively to
physical robotic systems.
Comparison of T-MEE Variants. As shown in Figure 3,
all three T-MEE variants consistently outperform the baseline
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Fig. 3. Performance comparison of MEE-based variants on LIBERO. We compare the baseline regression objective with three information-
theoretic variants, including T-MEE, Chunk-weighted T-MEE (Cw-TMEE), and Element-weighted T-MEE (Ew-TMEE). Results are reported for representative
continuous-action VLA architectures. All MEE-based objectives consistently improve performance over the baseline, while different variants exhibit
complementary advantages across architectures and task suites, highlighting the flexibility of distribution-level error shaping.

Task 1: place a banana 
into the basket

Task 2: wipe the 
whiteboard

Task 3: handing 
over a cup

(a) Real-world Setup and Tasks (b) Success Rate of Tasks

Task 4: handing 
over a cup (unseen)

Fig. 4. Real-world evaluation. (a) Real-world robotic setup and representa-
tive manipulation tasks. (b) Task success rates comparing GR00T and GR00T
+ T-MEE, showing consistent performance gains from T-MEE across all tasks.

regression objective across multiple VLA architectures on
LIBERO, demonstrating the effectiveness of distribution-level
error supervision. Across architectures and evaluation suites,
we find that the standard T-MEE objective accounts for most
of the performance gains. While the weighted variants can
provide additional improvements in certain settings, these
gains are not consistent across models and tasks. In contrast,
T-MEE exhibits robust performance across all architectures,
indicating that T-MEE minimization alone is sufficient to
effectively reshape action error distributions in practice.

C. More Analyses

Few-Shot Learning. We evaluate T-MEE under few-shot
supervision by varying the training data ratio on the LIBERO
benchmarks. As shown in Figure 6, T-MEE consistently im-
proves success rates over the GR00T baseline across all task
suites and data regimes, with more pronounced gains as the
amount of training data decreases. These results indicate that
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Fig. 5. Average success rates of GR00T with and without T-MEE under
different noise corruptions on LIBERO.

T-MEE enhances data efficiency by providing distribution-
level supervision, enabling more robust learning from limited
demonstrations. Additional few-shot results across different
models are provided in Appendix H.
Robustness to Noises. The preceding theoretical analysis
suggests that MEE is inherently robust to non-Gaussian noise
and outliers. Accordingly, we consider two types of image
corruptions, motion blur and salt-and-pepper noise, as well as
two types of action noise, namely Cauchy noise and impulse
noise. Detailed noise definitions and additional experiments
are provided in Appendix I. As shown in Figure 5, we fine-
tune GR00T under each noise setting and evaluate perfor-
mance on LIBERO. Across all noise types, incorporating T-
MEE consistently improves the average success rate over the
baseline. These results indicate that distribution-level supervi-
sion enhances robustness to corrupted observations and noisy
demonstrations, providing a strong inductive bias for VLA
training under noisy supervision.
Imbalanced Data Regimes. Since each LIBERO suite con-



(a) Few-shot Ratio=0.5 (b) Few-shot Ratio=0.2 (c) Few-shot Ratio=0.1 (d) Few-shot Ratio=0.05

Fig. 6. Radar plots comparing GR00T and GR00T + T-MEE under different few-shot ratios. Each subplot reports success rates across the four LIBERO task
suites and the overall average. As the amount of training data decreases, T-MEE consistently improves performance across task suites, with more pronounced
gains in low-data regimes, indicating enhanced data efficiency and robustness to limited supervision.

LIBERO-Spatial LIBERO-Goal

LIBERO-Object LIBERO-Long

Fig. 7. Success rates of GR00T with and without T-MEE under different
imbalance ratios on LIBERO.

sists of ten tasks with relatively balanced demonstrations,
we construct imbalanced training regimes by assigning 40
demonstrations to five tasks as the majority group, while
progressively reducing the remaining five tasks to 10, 4, and 1
demonstration, corresponding to imbalance ratios of 4, 10, and
40, respectively. As shown in Figure 7, we evaluate GR00T
under varying degrees of task-level data imbalance. Under
mild to moderate imbalance, incorporating T-MEE consis-
tently improves performance across all task suites. However,
when the imbalance becomes extreme, corresponding to an
imbalance ratio of 40, the benefits of T-MEE diminish and
may no longer hold. This observation is consistent with our
theoretical analysis, indicating that while T-MEE effectively
mitigates moderate task imbalance by reshaping error distri-
butions, its robustness has a practical limit when supervision
for minority tasks becomes severely insufficient. These results
characterize the effective operating range of T-MEE under
imbalanced data regimes. Notably, when evaluation focuses
primarily on dominant tasks and does not explicitly probe
long-tail tasks with very few demonstrations, performance
gains can still be observed. As shown in Table II, experiments
on SimplerEnv further support this phenomenon. The Bridge
dataset in SimplerEnv follows a highly long-tailed distribution,
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Fig. 8. Evolution of action error entropy during training.

yet T-MEE continues to improve performance when evaluated
on dominant tasks, suggesting that the benefits of T-MEE can
manifest even when long-tail tasks are under-represented or
not directly evaluated. Additional results under imbalanced
data regimes are provided in Appendix J.
Error Analysis of One Trajectory. As shown in Figure 1, we
observe a distinct behavior in small models. Action prediction
errors at early timesteps exhibit pronounced outliers, whereas
the aggregated error distribution over the full trajectory re-
mains relatively compact and centered near zero. Despite these
early outliers, the model attains a higher overall success rate.
We attribute this phenomenon to limited model capacity. In
the initial acceleration or initialization phase of the trajec-
tory, smaller models may struggle to precisely predict action
magnitudes, resulting in large instantaneous errors while still
capturing correct directional trends. In contrast, larger models
do not exhibit this behavior. Their action errors remain tightly
clustered throughout the trajectory, reflecting more consistent
action execution and correspondingly higher task success.
Error Entropy Visualizations. Figure 8 visualizes the evo-
lution of action error entropy during training. Since T-MEE
is introduced after 10k training steps, the two curves largely
overlap in the early stage. After T-MEE is activated, the
entropy under T-MEE decreases more rapidly and converges
to a lower level compared to the baseline. This indicates that
trajectory-level MEE effectively reshapes the error distribution
once applied, leading to more compact and stable action errors.
Additional analyses are provided in Appendix K.



VI. CONCLUSION

We revisit action regression objectives for VLA mod-
els from an information-theoretic perspective and propose
trajectory-level Minimum Error Entropy with two weighted
variants. By reshaping action error distributions beyond point-
wise regression, T-MEE promotes compact and structured
errors without assuming a predefined parametric form. Ex-
periments on simulation benchmarks and real-robot tasks
demonstrate consistent improvements under standard, few-
shot, noisy, and moderately imbalanced settings, with negligi-
ble training overhead. These results underscore the effective-
ness of distribution-level supervision for enhancing robustness
and data efficiency in continuous-action VLA models.
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APPENDIX

A. Proof of Proposition 1

Proof: Starting from the relation LT-MEE = − logZ + const, the gradient with respect to a specific error sample ei is
given by:

∇eiLT-MEE = − 1

Z
∇eiZ. (14)

Considering the summation Z =
∑

a

∑
b kab, the gradient ∇ei

Z only involves terms where the index a = i or b = i. Exploiting
the symmetry of the Gaussian kernel (kij = kji), we obtain:

∇eiZ =

N∑
j=1

∇eikij +

N∑
j=1

∇eikji = 2

N∑
j=1

[
−kij
σ2

(ei − ej)

]
. (15)

Substituting this result into the gradient of the loss and negating the sign yields the force Fi:

Fi =
2

σ2Z

N∑
j=1

kij(ej − ei). (16)

This formulation reveals that each error ei is “pulled” toward other errors ej with a strength proportional to their similarity
kij , fostering a global clustering effect in the error space.

B. Proof of Proposition 2

Proof: To analyze the statistical structure of the T-MEE objective, we consider a Taylor expansion of the information
potential

Z =

T∑
t=1

T∑
s=1

exp

(
−∥et − es∥2

2σ2

)
. (17)

with respect to the kernel bandwidth σ. For sufficiently large σ and any finite truncation order n ≥ 2, the exponential can be
expanded as

exp(−x) =

n∑
k=0

(−1)k

k!
xk +O(xn+1), x =

∥et − es∥2

2σ2
. (18)

Substituting x and summing over (t, s) gives

Z =
∑
t,s

n∑
k=0

(−1)k

k!

(
∥et − es∥2

2σ2

)k

+O(σ−2(n+1))

= T 2 +

n∑
k=1

(−1)k

k! 2k σ2k

∑
t,s

∥et − es∥2k +O(σ−2(n+1)). (19)

In particular, the first two non-constant terms can be written explicitly as

Z = T 2 − 1

2σ2

∑
t,s

∥et − es∥2 +
1

8σ4

∑
t,s

∥et − es∥4

+

n∑
k=3

(−1)k

k! 2k σ2k

∑
t,s

∥et − es∥2k +O(σ−2(n+1)). (20)

The leading non-constant term recovers the MSE structure. Using the identity∑
t,s

∥et − es∥2 = 2T

T∑
t=1

∥et − ē∥2, ē =
1

T

∑
t

et, (21)

we see that minimizing the second-order term is equivalent to minimizing the empirical MSE loss.
The higher-order terms with k ≥ 2 depend on

∑
t,s ∥et − es∥2k and are therefore sensitive to higher-order moments

(e.g., kurtosis) and heavy-tailed structure in the error distribution. While a pure MSE objective only controls the second-
order moment, the T-MEE objective incorporates these higher-order contributions, penalizing large pairwise deviations and
encouraging trajectory errors to concentrate in a compact region of the error manifold, thereby suppressing stochastic outliers.



C. Proof of Proposition 3
Consider an outlying error sample eo far from the consensus, i.e., ∥eo − ej∥ ≥ cσ for all j ̸= o with c ≫ 1. The gradient

contribution induced by eo is exponentially bounded, ensuring the stability of the optimization:∥∥∇eoLT-MEE

∥∥ =
∥∥∥ 2

σ2Z

T∑
j=1

koj(eo − ej)
∥∥∥ = O

(
ce−c2/2

)
. (22)

Robustness is manifested through the adaptive importance weights kij within the gradient expression. In standard MSE, the
gradient ∇LMSE ∝ (eo − ej) grows linearly with the error magnitude, allowing a single outlier to dominate the parameter
updates (the ”leverage point” effect). In contrast, within the T-MEE framework, as the distance ∥eo−ej∥ increases, the Gaussian
kernel koj decays exponentially. For c ≫ 1, the product koj∥eo − ej∥ vanishes after reaching a finite maximum, effectively
”rejecting” the outlier. Consequently, the optimization trajectory remains governed by the consensus of the error distribution
rather than extreme values.

D. Proof of Proposition 4
In this section, we provide a formal analysis of the interaction structure induced by the T-MEE objective in multi-task

learning settings, and derive the coupling criterion stated in Proposition 4.
a) Setup: Consider two task groups A and B, with NA and NB error samples, respectively. Let ei denote an error sample,

and let
kij = exp

(
−∥ei − ej∥2

2σ2

)
(23)

denote the Gaussian kernel similarity between error samples i and j. Recall that the T-MEE objective is defined as

LT-MEE = − log

 1

N2

∑
i,j

kij

 , (24)

where N = NA +NB .
b) Within- and cross-task interaction scaling: We analyze the optimization dynamics acting on an error sample ei

belonging to task B. From the gradient expression of T-MEE, the force acting on ei is proportional to a similarity-weighted
sum over all other error samples. This interaction naturally decomposes into two components: (i) within-task interactions with
other samples from task B, and (ii) cross-task interactions with samples from task A. To characterize their relative strength,
we define the empirical average kernel similarities:

k̄BB =
1

N2
B

∑
i,j∈B

kij ,

k̄AB =
1

NANB

∑
i∈A, j∈B

kij .
(25)

For an error sample ei ∈ B, the expected magnitude of within-task interactions scales as O
(
NB k̄BB

)
, while the expected

magnitude of cross-task interactions scales as O
(
NA k̄AB

)
. These scalings reflect the fact that each error sample interacts with

all other samples, weighted by their kernel similarity.
c) Coupling criterion: Comparing the two interaction terms, the relative strength of cross-task interactions acting on task

B is characterized by the ratio

RB = 2 · NA

NB
· k̄AB

k̄BB
, (26)

where the factor of 2 accounts for symmetric cross-task contributions arising from pairs (i, j) ∈ A×B and (i, j) ∈ B ×A in
the kernel aggregation.

When RB ≫ 1, cross-task interactions from task A dominate the optimization dynamics of task B, causing the minority
task to be strongly coupled to the majority task. In contrast, when RB ≪ 1, within-task interactions dominate and task B
evolves largely independently. This establishes that multi-task coupling under T-MEE is jointly governed by sample imbalance
and the overlap of error distributions in error space, as reflected by the kernel similarity ratio k̄AB/k̄BB .

d) Relation to kernel aggregation.: For completeness, the kernel aggregation term admits the exact decomposition∑
i,j

kij = N2
Ak̄AA + 2NANB k̄AB +N2

B k̄BB , (27)

where k̄AA denotes the average within-task similarity for task A. This decomposition makes explicit how within-task and cross-
task interactions contribute to the overall information potential, but the coupling behavior of individual tasks are governed by
the relative scaling captured by Equation (27).



E. Additional Related Work of Minimum Error Entropy

Minimum Error Entropy (MEE) was originally introduced in the early 1990s as an estimation principle based on minimizing
the entropy of the error distribution by Janzura et al. [25]. It was later developed into a learning criterion within the information-
theoretic learning framework by Principe and collaborators [18, 34], and subsequently further advanced in the context of
robust learning and signal processing [9]. Prior work has established important theoretical properties of MEE, including its
convergence behavior [9, 43] and robustness to non-Gaussian noise and outliers [11, 13, 16, 21, 46]. By directly operating on
the error distribution, MEE is more sensitive to higher-order statistical characteristics of the error signal, such as heavy tails and
peakedness, and provides more stable gradient directions when noise deviates from Gaussian assumptions. The computational
complexity of MEE has also been studied extensively [10, 12]. Early work emphasized the quadratic complexity induced by
kernel-based entropy estimation, particularly in online learning and adaptive filtering settings where model capacity was limited
and the loss computation dominated the overall cost. In contrast, in modern large-scale Vision–Language–Action models, the
computational overhead of MEE-based objectives becomes negligible relative to the dominant cost of deep representation
learning and action generation. When implemented with GPU-parallelized tensor operations over mini-batches or trajectories,
the additional cost introduced by MEE is effectively amortized by the forward and backward passes of the backbone network.
As a result, in the regime of large-scale VLA models, the primary challenge of applying MEE is no longer computational
feasibility, but how to properly structure error interactions and integrate distribution-level supervision with modern action
generation objectives.

F. Implementation Details

1) Simulation Experiments:
a) Small-scale VLA models: We evaluate T-MEE on three representative small-scale behavior cloning models, including

BC-DP, BC-RNN, and BC-Transformer. All models share the same visual encoder, language processing pipeline, data
augmentation strategy, and evaluation protocol, while differing in temporal modeling and action head architectures.

Shared Settings. All small-scale models share the same visual encoder, language processing pipeline, data augmentation
strategy, and training protocol. Specifically, we use a ResNet-based image encoder with the last four layers removed, trained
from scratch without pretrained weights or frozen parameters. Models are trained for 50 epochs with a batch size of 128
on a single A100 GPU, using the AdamW optimizer with a learning rate of 1 × 10−4, β = (0.9, 0.999), and weight decay
1 × 10−4. Visual observations include agent-view and eye-in-hand RGB images at a resolution of 128 × 128, together with
gripper and joint states. Language instructions are encoded using a BERT-based tokenizer and fused into the visual stream via
FiLM conditioning. All models are evaluated over 50 rollout episodes per task.

TABLE III
SHARED SETTINGS FOR SMALL-SCALE VLA MODELS.

Category Configuration

Image Encoder ResNet, last 4 layers removed, trained from scratch
Image Resolution 128× 128 (agent-view, eye-in-hand)
Language Encoder BERT tokenizer, max length 25
Language Fusion FiLM conditioning
Optimizer AdamW (1× 10−4, β = (0.9, 0.999))
Weight Decay 1× 10−4

Batch Size 128
Training Epochs 50
Hardware Single NVIDIA A100 GPU
Data Augmentation Brightness/contrast/saturation/hue (0.3), noise ϵ = 0.1
Evaluation 50 rollouts per task (LIBERO)

MEE-based Settings. During training, we adopt a two-phase optimization strategy. In the first one-third of the total training
steps, we optimize the model using only the MSE objective to stabilize the action error distribution. In the remaining two-thirds
of training, we activate the MEE-based objectives. For T-MEE, the kernel bandwidth σ is fixed to 0.5, and the loss weight α
is selected from {0.01, 0.1, 1.0}. For the weighted variants, Cw-TMEE and Ew-TMEE, all hyperparameters follow the T-MEE
setting, with the additional bandwidth parameter σw also fixed to 0.5.

BC-DP. The BC-DP model adopts a diffusion-based action head with a DiT-B backbone. The diffusion head operates on
tokens of dimension 64, predicts 7-dimensional actions, and models a future action window of 9 steps (corresponding to an
action chunk length of 10), with 8 repeated diffusion steps. Temporal dependencies are modeled using a 4-layer transformer
with 6 attention heads and a maximum sequence length of 10. For T-MEE, the kernel bandwidth is fixed to σ = 0.5, while
the MEE loss weight is set to 0.01 for spatial and object tasks, and 0.1 for goal and long-horizon tasks.

BC-RNN. The BC-RNN model employs a two-layer unidirectional RNN with a hidden size of 1024 to capture temporal
dependencies. Actions are predicted using a two-layer MLP head with a hidden size of 1024. The kernel bandwidth is set



to σ = 0.5 for all task suites. The T-MEE loss weight is set to 1.0 for spatial, goal, and long-horizon tasks, and 0.1 for
object-centric tasks.

BC-Transformer. The BC-Transformer model uses the same temporal transformer configuration as BC-DP, consisting of 4
layers, 6 attention heads, and a maximum sequence length of 10. Action prediction is performed using a two-layer MLP head
with a hidden size of 1024. For T-MEE, the kernel bandwidth is fixed to σ = 0.5, and the MEE loss weight follows the same
setting as BC-RNN, with higher weights for spatial, goal, and long-horizon tasks, and a lower weight for object-centric tasks.

2) Large-scale VLA models: All large-scale models share the same training protocol and optimization settings unless
otherwise specified. We use separate learning rates for the vision–language backbone and the action model, and train all
models with a unified optimizer, scheduler, batch size, and training budget. The number of training steps and action chunk
length differ between LIBERO and SimplerEnv. For models equipped with an action head (except OFT), we adopt a diffusion-
based action model with a DiT-B backbone. Detailed configurations are summarized in Table IV.

TABLE IV
SHARED TRAINING AND ARCHITECTURE SETTINGS FOR LARGE-SCALE VLA MODELS.

Category Configuration

Optimizer AdamW (β = (0.9, 0.95), ϵ = 1× 10−8, weight decay 1× 10−8)
Learning Rate 1× 10−5 (VLM), 1× 10−4 (action expert)
LR Scheduler Cosine with minimum LR 1× 10−6

Warm-up Steps 5k steps
Training Steps 30k (LIBERO), 40k (SimplerEnv)
Batch Size 128 (8 GPUs × 16 samples per GPU)
Action Chunk Length 8 (LIBERO), 16 (SimplerEnv)
Action Head Type Diffusion-based (DiT-B), except OFT
Diffusion Steps 4 repeated steps, 1000 timestep buckets
DiT Backbone 16 layers, 12 heads, head dim 64, input dim 768
Cross-Attention Dim 2048
Dropout 0.2 (final-layer dropout enabled)
Action Hidden Dim 1024
Evaluation 50 rollouts per task (LIBERO), 24 rollouts per task (SimplerEnv)

GR00T conditions the action expert on the final-layer vision-language features produced by the backbone, using these
features as the sole conditioning signal for action generation.

PI conditions the action expert on multi-layer VL features, aggregating representations from multiple backbone layers rather
than relying only on the final-layer output.

DS-VLA similarly conditions the action expert on the final-layer VL features. In addition, the image encoder used in its
System 1 branch is DINOv2-ViT-S/14 [33].

OFT augments the VLA backbone by appending learnable tokens corresponding to the action chunk length multiplied by
the action dimensionality. These tokens are jointly optimized with the backbone to directly model temporally chunked action
representations.

3) Real-world Experiments: We adopt a single baseline, namely the original GR00T N1.5 [4] implementation with its default
architecture and a continuous-action flow-matching head.

Shared Settings. For real-robot experiments, we train GR00T with an action chunk size of K = 25 and batch size 128 on
a single H100 GPU. We follow the recommended optimization hyperparameters, using AdamW with a learning rate 1× 10−4,
weight decay 1 × 10−5, and a warmup ratio of 0.05 of the total training steps. Consistent with the original setup, we freeze
both the language model backbone and the vision tower, and fine-tune only the projector and diffusion policy head.

MEE-based Settings. During training, we adopt a two-phase optimization strategy with a total of 10k training steps. In
the first one-third of the training process, the model is optimized using only the MSE objective to stabilize the action error
distribution. In the remaining two-thirds of training, we activate the MEE-based objectives. For T-MEE, the kernel bandwidth
σ is fixed to 0.5, and the loss weight α is set to 1.0.

G. Additional Experiments with Original GR00T N1.5 Models
We further evaluate T-MEE on the original GR00T N1.5 models [4] without architectural or training modifications. As

shown in Table V, incorporating T-MEE consistently improves performance across all LIBERO task suites, leading to a higher
overall average success rate. These results demonstrate that the effectiveness of T-MEE is not limited to re-trained or modified
backbones, but also extends to strong off-the-shelf VLA models. This further confirms the general applicability of T-MEE as
a lightweight and architecture-agnostic supervision objective.

H. Additional Experiments with Few-shot Learning Across Models
Table VI presents few-shot evaluation results on LIBERO under a fixed training ratio of 0.2 across multiple VLA architectures.

Across all models, incorporating T-MEE consistently improves the overall average success rate, demonstrating that the benefits



TABLE V
PERFORMANCE COMPARISON ON LIBERO WITH ORIGINAL GR00T N1.5. RESULTS ARE REPORTED AS SUCCESS RATES.

Method Spatial Goal Object Long Avg

GR00T N1.5 [4] 93.4 85.0 89.4 78.4 86.6
+ T-MEE 93.8 87.2 93.2 80.4 88.7

TABLE VI
FEW-SHOT EVALUATION ON LIBERO UNDER A 0.2 TRAINING RATIO. SUCCESS RATES (%) ARE REPORTED FOR EACH TASK SUITE AND THE OVERALL

AVERAGE ACROSS DIFFERENT VLA ARCHITECTURES.

Method Spatial Goal Object Long Avg

BC-Transformer [32] 42.4 51.0 57.6 8.8 40.0
+ T-MEE 48.6 57.4 67.6 9.4 45.8

GR00T [4] 85.0 77.2 94.4 53.0 77.4
+ T-MEE 84.8 79.0 97.8 60.2 80.5

OFT [26] 93.4 86.4 92.0 58.4 82.6
+ T-MEE 93.4 88.0 96.4 59.6 84.4

π0 [5] 90.4 77.2 93.6 61.6 80.7
+ T-MEE 92.4 82.4 96.0 63.2 83.5

DS-VLA [38] 77.4 74.6 89.0 54.4 73.9
+ T-MEE 81.0 76.8 96.6 55.0 77.4

of T-MEE are not tied to a specific backbone or action head. These results further confirm that T-MEE serves as a generally
applicable, architecture-agnostic supervision objective that enhances data efficiency in few-shot learning settings.

I. Additional Experiments with Noise Across Models

1) Noise Types in Our Study: We consider four types of noise to evaluate robustness under corrupted supervision, including
two image-level corruptions and two action-level noise models.

a) Image-level Noise: We follow the experimental setup of [28] for image-level noise injection. Specifically, motion blur
is applied using a horizontal linear kernel with size k = 5. For salt-and-pepper (SAP) noise, a fraction of 0.2 of image pixels
is corrupted, with equal probability assigned to salt and pepper noise. Gaussian noise is added with a standard deviation of
10.0. We next describe the three types of image-level noise considered in our experiments.

Motion Blur simulates camera or object motion during image acquisition. We apply a linear motion blur by convolving
the input image with a normalized directional kernel of fixed size. This corruption primarily degrades spatial details while
preserving global structure, and represents common observation noise in real-world robotic perception. Salt-and-pepper (SAP)
noise randomly replaces a subset of image pixels with extreme values. This corruption introduces sparse but high-magnitude
perturbations, leading to impulsive outliers in the visual observation space. SAP noise is commonly used to model sensor faults
or transmission errors. Gaussian Noise adds zero-mean Gaussian perturbations to image intensities. Unlike SAP noise, which
produces sparse and extreme outliers, Gaussian noise induces dense but small-magnitude deviations and serves as a standard
baseline for modeling observation noise under Gaussian assumptions. We visualize these three noise types in Figure 9.

Original Image Gaussian Noise SAP Noise Motion Blur

Fig. 9. Visualization of image-level noise corruptions used for robustness evaluation.

b) Action-level Noise: Action-level noise perturbs the continuous action commands directly in the action space, modeling
execution-time disturbances such as actuator uncertainty, control jitter, or occasional command corruption. Formally, given
a clean action a ∈ Rd, action-level noise produces a corrupted action ã by adding stochastic perturbations to a. In our
experiments, we consider two representative types of action-level noise: Cauchy noise, which introduces continuous heavy-
tailed perturbations, and impulse noise, which produces sparse but extreme outliers.



Cauchy Noise is added to continuous action values by sampling from a Cauchy distribution. Given a clean action a ∈ Rd,
the corrupted action is defined as

ã = a+ ϵ, ϵ ∼ Cauchy(0, γ), (28)

where γ denotes the scale parameter. In our experiments, we set γ = 0.02. Due to its heavy-tailed nature and undefined
variance, Cauchy noise induces frequent large-magnitude perturbations, serving as a representative non-Gaussian noise model
for action corruption. The sampled noise is truncated to a bounded range in practice.

Impulse Noise corrupts actions by injecting large deviations with a small probability. Specifically, the corrupted action is
given by

ã =

{
a+ δ, with probability p,

a, with probability 1− p,
(29)

where δ is sampled from a zero-mean distribution with large variance. In our implementation, the impulse probability is set
to p = 0.05. Unlike Cauchy noise, which is continuously heavy-tailed, impulse noise produces sparse but extreme outliers,
modeling occasional execution failures or actuator glitches.

2) Additional Experiments: We further evaluate robustness by directly testing models on noisy observations without any
noise-specific fine-tuning. As shown in Figure 10, adding T-MEE consistently improves performance across different VLA
architectures under both Gaussian and SAP noise. Notably, the gains are more pronounced under SAP noise, which introduces
sparse and high-magnitude perturbations. This suggests that T-MEE enhances inherent robustness to outliers and non-Gaussian
corruptions, even in the absence of explicit noise exposure during training. Overall, these results indicate that T-MEE improves
zero-shot robustness to observation noise by shaping action error distributions in a noise-agnostic manner.

(a) Gaussian noise (b) Salt-and-pepper noise

Fig. 10. Performance under image-level noise without noise-specific training on LIBERO. Evaluation is conducted by directly testing models on noisy
observations. T-MEE improves robustness across different architectures, particularly under salt-and-pepper noise.

J. Additional Experiments with Imbalance Across Models

Table VII reports performance under a fixed imbalance ratio of 0.25 across multiple VLA architectures. Across all evaluated
models, incorporating T-MEE consistently improves the overall average success rate compared to the corresponding baselines.
The gains are observed across different task suites, including spatial, goal-oriented, object-centric, and long-horizon tasks,
indicating that the benefits of T-MEE are not restricted to a specific architecture or task type. These results further demonstrate
that T-MEE provides a generally effective supervision signal under moderate task-level imbalance. Combined with the main
text analysis, they also suggest that the effectiveness of T-MEE holds within a practical range of imbalance, while extreme
imbalance remains a challenging regime.

K. Additional Analysis Experiments

1) Hyperparameter Sensitivity: Figure 11 analyzes the sensitivity of T-MEE to its key hyperparameters. Overall, performance
remains stable across a wide range of the loss weight α in Equation 9 and the kernel bandwidth σ in Equation 6. While extreme
values lead to mild performance degradation, intermediate settings consistently yield strong results. These findings indicate
that T-MEE does not require precise hyperparameter tuning and admits a broad and stable operating regime in practice.



TABLE VII
PERFORMANCE ON LIBERO UNDER AN IMBALANCE RATIO OF 0.25. RESULTS ARE REPORTED AS SUCCESS RATES. BEST RESULTS WITHIN EACH

METHOD BLOCK ARE BOLDED.

Method Spatial Goal Object Long Avg

BC-Transformer [32] 65.6 62.4 44.8 12.4 46.3
+ T-MEE 66.4 67.8 50.2 14.2 49.7

GR00T [4] 95.6 84.6 98.6 74.6 88.4
+ T-MEE 95.8 86.2 99.4 78.2 89.9

OFT [26] 96.6 86.6 95.8 79.2 89.6
+ T-MEE 98.0 89.2 96.0 82.4 91.4

π0 [5] 97.6 85.2 99.4 78.4 90.2
+ T-MEE 97.8 86.2 99.4 84.2 91.9

DS-VLA [38] 89.6 84.2 99.0 80.4 88.3
+ T-MEE 96.6 84.8 99.4 81.4 90.6

(b) Sensitivity to 𝜎𝜎(a) Sensitivity to 𝛼𝛼
Fig. 11. Sensitivity analysis of T-MEE hyperparameters. (a) Sensitivity to the loss weight α in Equation 9. (b) Sensitivity to the kernel bandwidth σ in
Equation 6. Results are reported as average success rates on LIBERO.

2) Training Overhead: Early studies on MEE in the 2010s primarily focused on improving its computational efficiency to
enable practical deployment under limited hardware resources. In modern training regimes, however, this concern has largely
diminished due to advances in GPU hardware and the substantially increased cost of large-scale model training and data loading.
In our experiments, the additional computational overhead introduced by T-MEE is negligible. On LIBERO, we measure the
per-iteration forward and backward pass time on a single NVIDIA H100 GPU to be approximately 0.59 seconds both with
and without T-MEE, with no observable difference between the two settings. In practice, overall training time is dominated
by model execution, data loading, and system-level resource scheduling, rather than the entropy-based loss computation itself.
These results indicate that T-MEE incurs essentially no additional training cost in modern VLA training pipelines.

L. Limitations

While our method consistently improves performance across a range of VLA architectures and data regimes, it also introduces
several limitations. First, T-MEE introduces additional hyperparameters, including the loss weight and kernel bandwidth, as
well as practical design choices such as the warm-up length before enabling the entropy objective. The need for hyperparameter
tuning is a common limitation shared by many information-theoretic learning methods. Second, trajectory-level error entropy
estimation requires sufficient sample support. Under extremely imbalanced data regimes, where certain tasks are represented
by only a few demonstrations, the reliability of entropy estimation degrades, and the effectiveness of T-MEE diminishes. This
characterizes a practical range of imbalance within which our method remains effective, rather than providing robustness under
arbitrarily severe imbalance.
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